
Visualizing Evaluation 39

the global variable A has value FOO

q-> (test 5)

|

T_] Apply TEST to 5

* create local variable A with value 5

* e.) (simple-incf a)

* : Q_] Apply macro SIMPLE-INCF to A

* : * create local variable VAR with value A

* : * q-> (print a)

* : * | a --> FOO

* : * | print FOO

* : * a-> FOO

* : * q-> (list 'setq var (list '+ var 1))

* : * |

* : * a-> (SETQ A (+ A 1))

* : A_] Result of macro expansion is (SETQ A (+ A 1))

* I-> (setq a (+ a 1))

* | (+ a 1) --> 6

* | set local variable A to 6

* a-> 6

A_] Result of TEST is 6

38 Visualizing Evaluation

\begin{evaltrace}
;{\it the global variable A has value FOO}
\strut
+--> ;(test 5)
|
+**> ;Apply TEST to 5
* ;create local variable A with value 5
* +..> ;(simple-incf a)
* : +__> ;Apply macro SIMPLE-INCF to A
* : * ;create local variable VAR with value A
* : * +--> ;(print a)
* : * | "a"-->"FOO"
* : * | ;print FOO
* : * +_-> ;FOO
* : * +--> ;(list ’setq var (list ’++ var 1))
* : * |
* : * +_-> ;(SETQ A (++ A 1))
* : +_*> ;Result of macro expansion is (SETQ A (++ A 1))
* +.-> ;(setq a (++ a 1))
* | "(++ a 1)"-->"6"
* | ;set local variable A to 6
* +_-> ;6
+_*> ;Result of TEST is 6
\end{evaltrace}

results in

Visualizing Evaluation 37

q-> (zero-center '(3 11 13))

|

T_] Apply ZERO-CENTER to (3 11 13)

* create local variable DATA with value (3 11 13)

* q-> (mapcar (shifter (average data)) data)

* | q-> (shifter (average data))

* | | (average data) --> 9

* | T_] Apply SHIFTER to 9

* | * create local variable KONST with value 9

* | * q-> #'(lambda (x) (- x konst))

e..................'

: * | * a-> #<Lexical-closure A>

v * | A_] Result of SHIFTER is #<Lexical-closure A>

q-----------w * | data --> (3 11 13)

| | * T_] Apply MAPCAR to #<Lexical-closure A>, (3 11 13)

| KONST = 9 | * *

| | * * E=! Apply #<Lexical-closure A> to 3

a-----------s * * % create local variable X with value 3

^ * * % q-> (- x konst)

| * * % |

a---------------/ a-> -6

^ * * D=! -6

| * *

| * * E=! Apply #<Lexical-closure A> to 11

| * * % create local variable X with value 11

| * * % q-> (- x konst)

a---------------/ |

^ * * % a-> 2

| * * D=! 2

| * *

| * * E=! Apply #<Lexical-closure A> to 13

| * * % create local variable X with value 13

| * * % q-> (- x konst)

a---------------/ |

* * % a-> 4

* * D=! 4

* A_] Result of MAPCAR is (-6 2 4)

A_] Result of ZERO-CENTER is (-6 2 4)

36 Visualizing Evaluation

\begin{evaltrace}
+--> ;(zero-center ’(3 11 13))
|
+**> ;Apply ZERO-CENTER to (3 11 13)
* ;create local variable DATA with value (3 11 13)
* +--> ;(mapcar (shifter (average data)) data)
* | +--> ;(shifter (average data))
* | | "(average data)"-->"9"
* | +**> ;Apply SHIFTER to 9
* | * ;create local variable KONST with value 9
* | * +--> ;#’(lambda (x) (- x konst))

e..................’
: * | * +_-> ;#<Lexical-closure A>
v * | +_*> ;Result of SHIFTER is #<Lexical-closure A>

q-----------w * | "data"-->"(3 11 13)"
| | * +**> ;Apply MAPCAR to #<Lexical-closure A>, (3 11 13)
|"KONST = 9"| * *
| | * * +==> ;Apply #<Lexical-closure A> to 3
a-----------s * * % ;create local variable X with value 3

ˆ * * % +--> ;(- x konst)
| * * % |
a---------------/ +_-> ;-6
ˆ * * +_%> ;-6
| * *
| * * +==> ;Apply #<Lexical-closure A> to 11
| * * % ;create local variable X with value 11
| * * % +--> ;(- x konst)
a---------------/ |
ˆ * * % +_-> ;2
| * * +_%> ;2
| * *
| * * +==> ;Apply #<Lexical-closure A> to 13
| * * % ;create local variable X with value 13
| * * % +--> ;(- x konst)
a---------------/ |

* * % +_-> ;4
* * +_%> ;4
* +_*> ;Result of MAPCAR is (-6 2 4)
+_*> ;Result of ZERO-CENTER is (-6 2 4)

\end{evaltrace}

produces

Visualizing Evaluation 35

q-> (zero-center '(3 11 13))

|

T_] Apply ZERO-CENTER to (3 11 13)

* create local variable DATA with value (3 11 13)

* q-> (let ...)

* | (average data) --> 9

* t=! Enter LET body

* % create local variable AVG with value 9

* % q-> (mapcar #'(lambda (x) (- x avg)) data)

* % | q-> #'(lambda (x) (- x avg))

* % | |

* % | a-> #<Lexical-closure A>

* % | data --> (3 11 13)

* % T_] Apply MAPCAR to #<Lexical-closure A> and (3 11 13)

* % *

* % * E=! Apply #<Lexical-closure A> to 3

* % * % create local variable X with value 3

* %<----/ q-> (- x avg)

* % * % |

* % * % a-> -6

* % * D=! -6

* % *

* % * E=! Apply #<Lexical-closure A> to 11

* % * % create local variable X with value 11

* %<----/ q-> (- x avg)

* % * % |

* % * % a-> 2

* % * D=! 2

* % *

* % * E=! Apply #<Lexical-closure A> to 13

* % * % create local variable X with value 13

* %<----/ q-> (- x avg)

* % * % |

* % * % a-> 4

* % * D=! 4

* % A_] Result of MAPCAR is (-6 2 4)

* D=! (-6 2 4)

A_] Result of ZERO-CENTER is (-6 2 4)

Notice the use of the special connecting-line character.

34 Visualizing Evaluation

\begin{evaltrace}
+--> ;(zero-center ’(3 11 13))
|
+**> ;Apply ZERO-CENTER to (3 11 13)
* ;create local variable DATA with value (3 11 13)
* +--> ;(let ...)
* | "(average data)"-->"9"
* +%%> ;Enter LET body
* % ;create local variable AVG with value 9
* % +--> ;(mapcar #’(lambda (x) (- x avg)) data)
* % | +--> ;#’(lambda (x) (- x avg))
* % | |
* % | +_-> ;#<Lexical-closure A>
* % | "data"-->"(3 11 13)"
* % +**> ;Apply MAPCAR to #<Lexical-closure A> and (3 11 13)
* % *
* % * +==> ;Apply #<Lexical-closure A> to 3
* % * % ;create local variable X with value 3
* %<----/ +--> ;(- x avg)
* % * % |
* % * % +_-> ;-6
* % * +_%> ;-6
* % *
* % * +==> ;Apply #<Lexical-closure A> to 11
* % * % ;create local variable X with value 11
* %<----/ +--> ;(- x avg)
* % * % |
* % * % +_-> ;2
* % * +_%> ;2
* % *
* % * +==> ;Apply #<Lexical-closure A> to 13
* % * % ;create local variable X with value 13
* %<----/ +--> ;(- x avg)
* % * % |
* % * % +_-> ;4
* % * +_%> ;4
* % +_*> ;Result of MAPCAR is (-6 2 4)
* +_%> ;(-6 2 4)
+_*> ;Result of ZERO-CENTER is (-6 2 4)
\end{evaltrace}

results in

Visualizing Evaluation 33

q-> (price-change 'widgets 1.25 1.35)

|

T_] Apply PRICE-CHANGE to 1.25 and 1.35

* create local variable NAME with value WIDGETS

* create local variable OLD with value 1.25

* create local variable NEW with value 1.35

* q-> (let* ...)

* | q-> (- new old)

* | |

* | a-> 0.10

* t=! Enter LET body

* % create local variable DIFF with value 0.10

* % q-> (/ diff old)

* % |

* % a-> 0.08

* % E=! Enter LET body

* % % create local variable PROPORTION with value 0.08

* % % q-> (* proportion 100.0)

* % % |

* % % a-> 8.0

* % % E=! Enter LET body

* % % % create local variable PERCENTAGE with value 8.0

* % % % q-> (list name 'changed 'by percentage 'percent)

* % % % |

* % % % a-> (WIDGETS CHANGED BY 8.0 PERCENT)

* D=!D=!D=! (WIDGETS CHANGED BY 8.0 PERCENT)

A_] Result of PRICE-CHANGE is (WIDGETS CHANGED BY 8.0 PERCENT)

Again, notice the use of the et font.

32 Visualizing Evaluation

\begin{evaltrace}
+--> ;(price-change ’widgets 1.25 1.35)
|
+**> ;Apply PRICE-CHANGE to 1.25 and 1.35
* ;create local variable NAME with value WIDGETS
* ;create local variable OLD with value 1.25
* ;create local variable NEW with value 1.35
* +--> ;(let* ...)
* | +--> ;(- new old)
* | |
* | +_-> ;0.10
* +%%> ;Enter LET body
* % ;create local variable DIFF with value 0.10
* % +--> ;(/ diff old)
* % |
* % +_-> ;0.08
* % +==> ;Enter LET body
* % % ;create local variable PROPORTION with value 0.08
* % % +--> ;(* proportion 100.0)
* % % |
* % % +_-> ;8.0
* % % +==> ;Enter LET body
* % % % ;create local variable PERCENTAGE with value 8.0
* % % % +--> ;(list name ’changed ’by percentage ’percent)
* % % % |
* % % % +_-> ;(WIDGETS CHANGED BY 8.0 PERCENT)
* D=!D=!+_%> ;(WIDGETS CHANGED BY 8.0 PERCENT)
+_*> ;Result of PRICE-CHANGE is (WIDGETS CHANGED BY 8.0 PERCENT)
\end{evaltrace}

produces

Visualizing Evaluation 31

\begin{evaltrace}
+--> ;(price-change ’widgets 1.25 1.35)
|
+**> ;Apply PRICE-CHANGE to WIDGETS, 1.25 and 1.35
* ;create local variable NAME with value WIDGETS
* ;create local variable OLD with value 1.25
* ;create local variable NEW with value 1.35
* +--> ;(let ...)
* | +--> ;(- new old)
* | | "new"-->"1.35"
* | | "old"-->"1.25"
* | +_-> ;0.10
* |
* | +--> ;(/ diff old)
* | |
A_]a->+_-> ;Error! DIFF unassigned variable.
\end{evaltrace}

results in

q-> (price-change 'widgets 1.25 1.35)

|

T_] Apply PRICE-CHANGE to WIDGETS, 1.25 and 1.35

* create local variable NAME with value WIDGETS

* create local variable OLD with value 1.25

* create local variable NEW with value 1.35

* q-> (let ...)

* | q-> (- new old)

* | | new --> 1.35

* | | old --> 1.25

* | a-> 0.10

* |

* | q-> (/ diff old)

* | |

A_]a->a-> Error! DIFF unassigned variable.

Here, in order to get the bottom arrows to run into each other, we use the raw et font character

mappings.

30 Visualizing Evaluation

q-> (average 3 7)

|

T_] Apply AVERAGE to 3 and 7

* create local variable X with value 3

* create local variable Y with value 7

*

* q-> (let ((sum ...)) ...)

* | q-> (+ x y)

* | |

* | a-> 10

* t=! Enter LET body

* % create local variable SUM with value 10

* %

* % q-> (list x y 'average (/ sum 2))

* % | x --> 3

* % | y --> 7

* % | 'average --> AVERAGE

* % | q-> (/ sum 2)

* % | | sum --> 10

* % | a-> 5

* % a-> (3 7 average 5)

* D=! (3 7 average 5)

A_] Result of AVERAGE is (3 7 AVERAGE 5)

Visualizing Evaluation 29

\begin{evaltrace}
+--> ;(average 3 7)
|
+**> ;Apply AVERAGE to 3 and 7
* ;create local variable X with value 3
* ;create local variable Y with value 7
*
* +--> ;(let ((sum ...)) ...)
* | +--> ;(++ x y)
* | |
* | +_-> ;10
* +%%> ;Enter LET body
* % ;create local variable SUM with value 10
* %
* % +--> ;(list x y ’average (/ sum 2))
* % | "x"-->"3"
* % | "y"-->"7"
* % | "’average"-->"AVERAGE"
* % | +--> ;(/ sum 2)
* % | | "sum"-->"10"
* % | +_-> ;5
* % +_-> ;(3 7 average 5)
* +_%> ;(3 7 average 5)
+_*> ;Result of AVERAGE is (3 7 AVERAGE 5)
\end{evaltrace}

produces

28 Visualizing Evaluation

\begin{evaltrace}
+--> ;(double (++ 3 5))
|
| +--> ;(++ 3 5)
| |
| +_-> ;8
|
+**> ;Apply DOUBLE to 8
* ;create local variable N with value 8
*
* +--> ;(* n 2)
* | "n"-->"8"
* | "2"-->"2"
* +_-> ;16
+_*> ;Result of DOUBLE is 16
\end{evaltrace}

results in

q-> (double (+ 3 5))

|

| q-> (+ 3 5)

| |

| a-> 8

|

T_] Apply DOUBLE to 8

* create local variable N with value 8

*

* q-> (* n 2)

* | n --> 8

* | 2 --> 2

* a-> 16

A_] Result of DOUBLE is 16

Here, another special character, the double-quote ("), is used to once again produce teletype

output. Unlike, semi-colon, this each double-quote does take up one column of space. This is

convenient in closure diagrams, as shown in a figure below.

The sequence +**> produces an upper thick arrow with a thin spur, T].

Visualizing Evaluation 27

C Examples

\begin{evaltrace}
+--> ;(++ 2 3)
|
| +--> ;2 {\it First argument evaluates to itself.}
| |
| +_-> ;2
|
| +--> ;3 {\it Second argument evaluates to itself.}
| |
| +_-> ;3
|
+**> ;Apply ++ to 2 and 3 {\it Apply the function to its arguments.}
*
+_*> ;5
\end{evaltrace}

produces

q-> (+ 2 3)

|

| q-> 2 First argument evaluates to itself.

| |

| a-> 2

|

| q-> 3 Second argument evaluates to itself.

| |

| a-> 3

|

T_] Apply + to 2 and 3 Apply the function to its arguments.

*

A_] 5

Asterisks produce thick solid lines. Notice that the semi-colon and special + characters don’t

take up any space on output, so this affects the placement of the italicized comments in getting

them to line up correctly.

26 Visualizing Evaluation

Special macros. The following special sequences have meaning only within an evaltrace

environment.

+--> q-> +..> e.)

+_-> a-> +_.> d.)

+**> T_] +%%> t=! +.-> I->

+_*> A_] +_%> D=!

Visualizing Evaluation 25

q-> (+ 2 3)

|

a-> 5

Notice that +--> and +_-> produce upper and lower thin arrows with elbows (q-> and a->,

respectively), and that the semi-colon tells LaTEX to set the rest of the line in tt font. Notice also

that since + is now a special character (it is actually an escape character just like \), we must write

++ to get a plus character.

The figures at the end of this document give several more examples, with some commentary.

Also, the distribution contains the LaTEX sources for the papers on evaltrace notation so that all of

the examples in the paper can be examined.

B The Evaltrace Font

Here are the mappings between ASCII and et characters.

Vertical lines.

| | * * % % : :

Horizontal lines.

- - _ _ = = . .

Crossed lines.

+ + # # H H h h x x X X Y Y y y

Arrow heads.

> > < < ^ ^ V V)) ((~ ~ v v

]] ! !

Spurred lines.

/ / ? ? ' '

Elbows.

q q w w a a s s Q Q W W A A S S

e e r r d d f f E E R R D D F F

Spurred elbows.

T T t t I I

24 Visualizing Evaluation

procedure foo (var x: integer);
begin

x :=
P

ai

end;

This environment will also ensure that no page breaks occur in the middle of the output. For

multi-page code output, the “bigcode” environment should be used instead of “code.”
The evaltrace style loads a special fixed-width font called “et,” which has the special characters

for drawing evaltrace diagrams. In the et font, various ASCII characters are mapped to et
characters, for example, saying {\et -} produces the evaltrace horizontal thin rule, -, {\et >}
produces >, and {\et -->} produces -->. Section B gives a complete listing of the et font.
This font makes it possible to draw simple evaltrace diagrams in the code environment, as in the
following:

\begin{code}
(+ 2 3) {\et -->} 5
\end{code}

which results in

(+ 2 3) --> 5

The evaltrace environment is similar to the code environment, but by default it uses the et font

instead of tt. Thus, it is useful for creating evaltrace diagrams in a “WYSIWYG” manner. The

best way to show how this works is by giving a few examples.

\begin{evaltrace}
q-> {\tt (* 2 3)}
|
a-> {\tt 5}
\end{evaltrace}

results in

q-> (* 2 3)
|

a-> 6

It’s a bit inconvenient to have to remember all of the character mappings, especially for more
complicated diagrams. Thus, the evaltrace environment defines a number of special character
sequences so that the ASCII representation of the diagrams looks more recognizable as an evaltrace
diagram. For example:

\begin{evaltrace}
+--> ;(++ 2 3)
|
+_-> ;5
\end{evaltrace}

produces

Visualizing Evaluation 23

A The Evaltrace Style

In order to promote the use of evaltrace notation (see Visualizing Evaluation in Applicative

Languages, by David S. Touretzky and Peter Lee, Carnegie Mellon Technical Report CMU-CS-89-

198-R, Pittsburgh, 1989), a formatting style and font for use with LaTEX have been made available.

These are available via anonymous ftp in compressed tar format, from a.ergo.cs.cmu.edu
(128.2.250.219), in directory pub/evaltrace, files README and evaltrace.tar.Z.

The creators of the style and font are not “wizards” at TEX or METAFONT. As a result, the style

and font definition files have been quickly hacked together. Any improvements that you might make

would be greatly appreciated. Please send them by email to either Peter.Lee@cs.cmu.edu.

We’ll try to keep the distribution up-to-date.

A.1 Loading the evaltrace style

The distribution contains several subdirectories which contain TEX style files, METAFONT files,

and various kinds of font information. These should all be installed into the appropriate places on

your computer system. Ask your local system administrator or TEX maintainer if you are not able

to do this yourself.

Once things have been installed properly, you will be able to use the evaltrace style by

specifying the “evaltrace” option in the documentstyle command. For example, the documentstyle

command for this document goes as follows:

\documentstyle[12pt,fullpage,evaltrace,code]{article}

The “code” option isn’t really a part of the evaltrace style, but is often useful in documents that

use evaltrace. Thanks should go to Jon Rees at MIT for providing us with the code style.

A.2 Using the evaltrace style

Basically, the evaltrace and code options define new environments (called evaltrace and code)
which behave much like verbatim, except that certain characters and character sequences are
interpreted in a special way. The code environment is almost exactly like verbatim (i.e., spaces
and line breaks are respected, and characters are set in teletype font), except that the backslash
(“\”) and dollar-sign (“$”) characters are still interpreted specially. So, for example, the following
input:

\begin{code}
{\bf procedure} foo ({\bf var} x: integer);

{\bf begin}
x := $\sum{\tt a}_{i}$

{\bf end}l
\end{code}

produces the following output:

22 Visualizing Evaluation

References

[1] Gabriel, R. P. (1987) Lisp. In S. C. Shapiro (ed.), Encyclopedia of Artificial Intelligence,

vol. 1, 508–528. New York: John Wiley.

[2] Plotkin, G. (1981). A Structural Approach to Operational Semantics. Technical Re-

port DAIMI–FN–19, Computer Science Department, Aarhus University, Denmark.

[3] Rees, J., and Clinger, W. (eds). (1986) The revised3 report on the algorithmic language

Scheme. ACM SIGPLAN Notices, vol. 21, no. 12, 37–79.

[4] Steele, G. L. Jr. (1984) Common Lisp: the Language. Burlington, MA: Digital Press.

[5] Touretzky, D. S. (1990) Common Lisp: A Gentle Introduction to Symbolic Computation.

Redwood City, CA: Benjamin/Cummings.

[6] Touretzky, D. S., and Lee, P. (in preparation) A graphical representation for evaluation and

scoping in applicative languages.

[7] Winston, P. H., and Horn, B. K. P. (1989) LISP, 3rd edition. Reading, MA: Addison-Wesley.

Visualizing Evaluation 21

q-> (foo1 3)

|

T_] Apply FOO1 to 3

* q-> (bar (baz x))

* | q-> (baz x)

* | |

* | T_] Apply BAZ to 3

* | *

* | A_] Result of BAZ is 3

* T_] Apply BAR to 3

* *

* A_] Result of BAR is 3

A_] Result of FOO1 is 3

q-> (foo2 3)

|

T_] Apply FOO2 to 3

* q-> (baz x)

* |

* T_] Apply BAZ to 3

* *

* A_] Result of BAZ is 3

* q-> (bar x)

* |

* T_] Apply BAR to 3

* *

* A_] Result of BAR is 3

A_] Result of FOO2 is 3

Figure 13: Unambiguous tracing using evaltrace.

20 Visualizing Evaluation

(trace bar baz foo1 foo2)

> (foo1 3)
0: (FOO1 3)
1: (BAZ 3)
1: returned 3
1: (BAR 3)
1: returned 3

0: returned 3

> (foo2 3)
0: (FOO2 3)
1: (BAZ 3)
1: returned 3
1: (BAR 3)
1: returned 3

0: returned 3

Figure 12: Ambiguous tracing in Lisp.

We believe evaltrace notation offers a significant improvement over both earlier notations, in

terms of scope of coverage, graphical intuitiveness, and extensibility. Its generality also makes

it useful for describing the operational semantics of programming languages, and in such a way

that program traces can be given as “two-dimensional” diagrams. In this respect, evaltrace can be

viewed as a pleasant alternative notation for Plotkin’s structured operational semantics [2]. This

connection to the Plotkin-style semantics is discussed in [6], along with extensions to evaltrace

for tail-recursion elimination, first-class continuations, assignment, and multiple closures with a

shared parent contour.

We hope that both Lisp novices and educators find the notation to be as useful as we

have. In support of this, we have made available a set of LaTEX macros and a special font

for producing evaltrace diagrams similar to the ones in this paper. They are available via

anonymous ftp in compressed tar format, from a.ergo.cs.cmu.edu (128.2.250.219), in

directory pub/evaltrace, files README and evaltrace.tar.Z. The appendix gives a

brief guide on the use of these macros and font.

Acknowledgements. The authors would like to thank Robert Harper for pointing out the

connection between evaltrace notation and Plotkin’s structured operational semantics.

Visualizing Evaluation 19

An evaltrace of PARENT is given in Figure 11. The evaluation rule for dynamically scoped

variables is that we search all the enclosing contours in the order they appear on the call stack,

ignoring the contours’ pointers to their normal (lexical) parents. The top level dynamic value

is used only if we make it all the way out to the global contour, meaning that no other contour

presently has a variable with the same name. PARENT “rebinds” the special variable *N*,

meaning that it establishes a (temporary) new dynamic variable with the name *N* that lasts as

long as PARENT remains on the call stack. Dynamic variables cannot be maintained in closures,

since they are entirely dependent on the call stack. PARENT’s binding of a variable *N* with

value 3 is in effect when CHILD evaluates *N*, so that is the variable that CHILD sees. When

PARENT exits, its binding of *N* disappears, and thus the previous binding of *N* becomes

visible again.

8 Conclusion

We think evaltrace notation is an effective tool for teaching the key concepts of evaluation in

Lisp and other applicative languages. We also find that evaltrace is flexible—extensions to other

features of Lisp such as tail-recursion elimination and first-class continuations (CALL/CC) are

quite easy to make, though we have not included them here.

Because tracing has been a part of Lisp since the days of Lisp 1.5, we should point out how

evaltrace diagrams differ from earlier tracing schemes. Lisp tracing programs usually work by

replacing the body of the function to be traced; thus they are only able to show the APPLY part of

the evaluation process. This can lead to ambiguities. For example, for the the functions FOO1

and FOO2

(defun bar (y) y)

(defun baz (z) z)

(defun foo1 (x)
(bar (baz x)))

(defun foo2 (x)
(baz x)
(bar x))

identical traces are produced in most Lisp implementations, as shown in Figure 12. In both cases,

BAZ is invoked before BAR. But in the first case BAZ is computing the argument to BAR, while

in the second case the calls to BAZ and BAR are independent. This difference is clearly portrayed

in the corresponding evaltrace diagrams given in Figure 13.

Another notation for explaining some aspects of Lisp evaluation is the “fence” notation of

Winston and Horn [7]. Fence notation focuses on the static structure of lexical contours; it is

not concerned with the dynamic process of evaluation, function invocation, and return. While it

can represent the environment of a closure as a series of nested fences, it cannot represent the

application of closures, nor does it cover macro expansion. Like most Lisp TRACE notations,

fence notation has no way to represent the difference between FOO1 and FOO2 above.

18 Visualizing Evaluation

the top level dynamic variable *N* has value 1000

q-> (parent 3)

|

T_] Apply PARENT to 3

* create dynamic variable *N* with value 3

*

* q-> (child (+ *n* 2))

* | q-> (+ *n* 2)

* | |

* | a-> 5

* T_] Apply CHILD to 5

* * create local variable P with value 5

* *

* * q-> (list *n* p)

* * | *n* --> 3

* * | p --> 5

* * a-> (3 5)

* A_] Result of CHILD is (3 5)

A_] Result of PARENT is (3 5)

N still has value 1000

Figure 11: Evaltrace diagram illustrating Common Lisp’s “special” variables.

7 Special Variables

Variables in Common Lisp are lexically scoped by default, but it is still possible to have a kind

of dynamically scoped variable called a special variable. There is no special evaltrace notation

for dynamic variables; one simply notes whether a given name has been declared special or not,

and once it has, all variables with that name will be dynamically scoped. By convention, special

variable names are written with surrounding asterisks, so that they can be easily distinguished

from lexical variable names. A variable name can be declared special with the DEFVAR form.

Let’s return to our earlier PARENT/CHILD example, but this time with a special variable.

(defvar *n* 1000)

(defun parent (*n*)
(child (+ *n* 2)))

(defun child (p)
(list *n* p))

Visualizing Evaluation 17

the global variable A has value FOO

q-> (test 5)

|

T_] Apply TEST to 5

* create local variable A with value 5

* e.) (simple-incf a)

* : Q_] Apply macro SIMPLE-INCF to A

* : * create local variable VAR with value A

* : * q-> (print a)

* : * | a --> FOO

* : * | print FOO

* : * a-> FOO

* : * q-> (list 'setq var (list '+ var 1))

* : * |

* : * a-> (SETQ A (+ A 1))

* : A_] Result of macro expansion is (SETQ A (+ A 1))

* I-> (setq a (+ a 1))

* | (+ a 1) --> 6

* | set local variable A to 6

* a-> 6

A_] Result of TEST is 6

Figure 10: Evaltrace diagram illustrating macro expansion.

16 Visualizing Evaluation

q-> (zero-center '(3 11 13))

|

T_] Apply ZERO-CENTER to (3 11 13)

* create local variable DATA with value (3 11 13)

* q-> (mapcar (shifter (average data)) data)

* | q-> (shifter (average data))

* | | (average data) --> 9

* | T_] Apply SHIFTER to 9

* | * create local variable KONST with value 9

* | * q-> #'(lambda (x) (- x konst))

e..................'

: * | * a-> #<Lexical-closure A>

v * | A_] Result of SHIFTER is #<Lexical-closure A>

q-----------w * | data --> (3 11 13)

| | * T_] Apply MAPCAR to #<Lexical-closure A> and (3 11 13)

| KONST = 9 | * *

| | * * E=! Apply #<Lexical-closure A> to 3

a-----------s * * % create local variable X with value 3

^ * * % q-> (- x konst)

| * * % |

a---------------/ a-> -6

^ * * D=! -6

| * *

| * * E=! Apply #<Lexical-closure A> to 11

| * * % create local variable X with value 11

| * * % q-> (- x konst)

a---------------/ |

^ * * % a-> 2

| * * D=! 2

| * *

| * * E=! Apply #<Lexical-closure A> to 13

| * * % create local variable X with value 13

| * * % q-> (- x konst)

a---------------/ |

* * % a-> 4

* * D=! 4

* A_] Result of MAPCAR is (-6 2 4)

A_] Result of ZERO-CENTER is (-6 2 4)

Figure 9: Evaltrace diagram illustrating closures.

Visualizing Evaluation 15

(defun shifter (konst)
#’(lambda (x) (- x konst)))

Below we have rewritten the function ZERO-CENTER in order to demonstrate the use of the

closures returned by SHIFTER. ZERO-CENTER calls SHIFTER to create a closure that will

subtract the average value from its input. It then uses MAPCAR to apply this closure to

ZERO-CENTER’s input values, DATA.

(defun zero-center (data)
(mapcar (shifter (average data)) data))

When SHIFTER returns a lexical closure, its parent contour, SHIFTER’s contour, is preserved on

the heap. This is shown in the evaltrace diagram in Figure 9 as a box on the left in which the local

variables of the contour reside. The local variable KONST resides in this box. When the closure

is invoked within the body of MAPCAR, its parent contour is this preserved contour. Within the

body of the closure, the symbol X evaluates to its local value because X is a local variable in

the closure’s contour; the symbol KONST evaluates to 9 because there is a variable by that name

visible in the parent contour.

Just like other data objects that are allocated in the heap, the contour for the lexical closure can

be garbage collected when there are no longer any pointers to it.

6 Macro Expansion

Macros provide a way to extend the syntax of Lisp. A macro function is applied to its unevaluated

arguments. Its parent contour is the global contour. The result returned by a macro function is a

Lisp expression which is then evaluated in the lexical context where the macro call appeared. As

with the duality between EVAL and APPLY, it is often hard to teach beginners how macros work,

but evaltrace notation can be used to show macros in action. Consider the SIMPLE-INCF macro,

a simplified version of Common Lisp’s INCF:

(defmacro simple-incf (var)
(print a)
(list ’setq var (list ’+ var 1)))

(setf a ’foo)

(defun test (a)
(simple-incf a))

An evaltrace of this macro is shown in Figure 10. Note that the symbol A appearing in the

body of the macro is taken as a reference to the global variable A, because the macro’s parent

contour is the global contour. But the A appearing in the SETQ expression returned by the macro

is evaluated within the lexical context of TEST, and so refers to the local variable A visible in the

body of TEST.

Macro expansions are drawn with a dotted line. The result of a macro expansion is evaluated

normally, as shown by the thin solid line to which the dotted line connects. Notice that the

argument to the macro is not evaluated, so the input to SIMPLE-INCF is the symbol A instead of

the value 5.

14 Visualizing Evaluation

q-> (zero-center '(3 11 13))

|

T_] Apply ZERO-CENTER to (3 11 13)

* create local variable DATA with value (3 11 13)

* q-> (let ...)

* | (average data) --> 9

* t=! Enter LET body

* % create local variable AVG with value 9

* % q-> (mapcar #'(lambda (x) (- x avg)) data)

* % | q-> #'(lambda (x) (- x avg))

* % | |

* % | a-> #<Lexical-closure A>

* % | data --> (3 11 13)

* % T_] Apply MAPCAR to #<Lexical-closure A> and (3 11 13)

* % *

* % * E=! Apply #<Lexical-closure A> to 3

* % * % create local variable X with value 3

* %<----/ q-> (- x avg)

* % * % |

* % * % a-> -6

* % * D=! -6

* % *

* % * E=! Apply #<Lexical-closure A> to 11

* % * % create local variable X with value 11

* %<----/ q-> (- x avg)

* % * % |

* % * % a-> 2

* % * D=! 2

* % *

* % * E=! Apply #<Lexical-closure A> to 13

* % * % create local variable X with value 13

* %<----/ q-> (- x avg)

* % * % |

* % * % a-> 4

* % * D=! 4

* % A_] Result of MAPCAR is (-6 2 4)

* D=! (-6 2 4)

A_] Result of ZERO-CENTER is (-6 2 4)

Figure 8: Evaltrace diagram illustrating functional arguments.

Visualizing Evaluation 13

elements. It does this by subtracting the average of the list (computed by AVERAGE) from each

element. ZERO-CENTER creates a function object (a lexical closure) to do this subtraction, and

passes it to MAPCAR so that it can be applied to each element in succession.

(defun average (seq)
(/ (reduce #’+ seq) (length seq)))

(defun zero-center (data)
(let ((avg (average data)))

(mapcar #’(lambda (x) (- x avg)) data)))

(zero-center ’(3 11 13)) --> (-6 2 4)

The function object passed to MAPCAR contains a reference to the variable AVG in its body.

Therefore, it is important that the closure’s parent contour be the contour where the closure was

created, not the global contour, in order for the closure to be able to access ZERO-CENTER’s

local variable AVG. This relationship is depicted in Figure 8.

Notice that MAPCAR’s contour is interposed between the contour created by the LET body

and the contours for each invocation of #<Lexical-closure A>. MAPCAR’s parent contour is the

global contour. But this doesn’t matter, because the closure doesn’t find its parent by looking

for the most recently created contour (i.e., just below the top of the call stack). The parent is

determined at the time the closure is defined, and it is remembered explicitly as part of the closure

object itself. In the evaltrace diagram, each time the closure is invoked by MAPCAR, its parent

contour is shown by a leftward-pointing arrow that appears to “jump over” the MAPCAR contour

to point to the LET body where the closure was defined. What’s really happening is that the

closure is “remembering” that the LET body’s contour is its parent; it ignores the contour created

by the invocation of MAPCAR.

This behavior is consistent with our textual-inclusion explanation. The text for the lambda

expression that gave rise to the closure appears inside the body of the LET, so the LET forms part

of the closure’s environment. There is no reason for the closure to be able to access any of the local

variables of MAPCAR, since it does not appear within the body of the definition of MAPCAR.

Functions created solely to be passed as arguments are known as funargs in Lisp. They have

the property that their parent contour is always somewhere below them on the call stack, although

as in the preceding example it will not be immediately below them. Early Lisp dialects (as well

as many block-structured languages like Pascal and Ada) allowed function objects to be used only

as funargs: a function object could be passed to other functions, but it could not be returned as

a value by the function that created it, because then its parent contour would no longer be on the

call stack. In Scheme and Common Lisp this restriction has been eliminated; it is possible for

contours to remain in existence even after the function call that created them has returned. This

is accomplished by locating the contour in heap storage rather than on the stack, when necessary.

(Actually, real implementations use many different strategies for representing contours in memory.

As a conceptual device, however, it is useful to think in terms of the representation of contours in

the heap and stack.) This means that we need a special way to draw contours for functions that are

returned as values. Consider the function SHIFTER below, which returns a closure that references

SHIFTER’s local variable KONST:

12 Visualizing Evaluation

q-> (price-change 'widgets 1.25 1.35)

|

T_] Apply PRICE-CHANGE to 1.25 and 1.35

* create local variable NAME with value WIDGETS

* create local variable OLD with value 1.25

* create local variable NEW with value 1.35

* q-> (let* ...)

* | q-> (- new old)

* | |

* | a-> 0.10

* t=! Enter LET body

* % create local variable DIFF with value 0.10

* % q-> (/ diff old)

* % |

* % a-> 0.08

* % E=! Enter LET body

* % % create local variable PROPORTION with value 0.08

* % % q-> (* proportion 100.0)

* % % |

* % % a-> 8.0

* % % E=! Enter LET body

* % % % create local variable PERCENTAGE with value 8.0

* % % % q-> (list name 'changed 'by percentage 'percent)

* % % % |

* % % % a-> (WIDGETS CHANGED BY 8.0 PERCENT)

* D=!D=!D=! (WIDGETS CHANGED BY 8.0 PERCENT)

A_] Result of PRICE-CHANGE is (WIDGETS CHANGED BY 8.0 PERCENT)

Figure 7: Evaltrace diagram illustrating LET*.

Visualizing Evaluation 11

q-> (price-change 'widgets 1.25 1.35)

|

T_] Apply PRICE-CHANGE to WIDGETS, 1.25 and 1.35

* create local variable NAME with value WIDGETS

* create local variable OLD with value 1.25

* create local variable NEW with value 1.35

* q-> (let ...)

* | q-> (- new old)

* | | new --> 1.35

* | | old --> 1.25

* | a-> 0.10

* |

* | q-> (/ diff old)

* | |

A_]a->a-> Error! DIFF unassigned variable.

Figure 6: Evaltrace illustrating an incorrect use of LET.

(defun price-change (name old new)
(let* ((diff (- new old))

(proportion (/ diff old))
(percentage (* proportion 100.0)))

(list name ’changed ’by percentage ’percent)))

The evaltrace for this in Figure 7 shows that LET* generates a new, nested contour for each variable

it creates. The diagram suggests that LET* expressions behave like nested LET expressions.

5 Closures

In Lisp, functions are first-class data objects: they can be created on the fly, passed as arguments,

and returned as values. Function objects are created in Common Lisp by passing a lambda

expression to the special function FUNCTION.1 The result of FUNCTION is a new function

object whose parent contour is the current contour, and whose parameter list and body are taken

from the lambda expression. These function objects are also known as lexical closures. We will

denote these function objects as #<Lexical-closure A>, #<Lexical-closure B>, and

so on.

One of the most common uses for lexical closures is as arguments to applicative operators such

as MAPCAR. In the example below, ZERO-CENTER takes a list of numbers as input and adjusts

them so that their sum is zero without changing any of the distances between pairs of individual

1In Scheme, LAMBDA is itself a special function that creates function objects, so there is no need for a FUNCTION

function. In Common Lisp, FUNCTION is usually abbreviated #’ just as QUOTE is abbreviated ’.

10 Visualizing Evaluation

q-> (gcd 12 6)

|

T_] Apply GCD to 12 and 6

* create local variable X with value 12

* create local variable Y with value 6

* q-> (if (= x y) ...)

* | (= x y) --> NIL

* | q-> (let ...)

* | | q-> (if (< x y) x y)

* | | | (< x y) --> NIL

* | | | y --> 6

* | | a-> 6

* | | q-> (if (< x y) y x)

* | | | (< x y) --> NIL

* | | | x --> 12

* | | a-> 12

* | t=! Enter LET body

* | % create local variable X with value 6

* | % create local variable Y with value 12

* | % q-> (gcd x (- y x))

* | % | X --> 6

* | % | (- y x) --> 6

* | % T_] Apply GCD to 6 and 6

* | % * create local variable X with value 6

* | % * create local variable Y with value 6

* | % * q-> (if (= x y) ...)

* | % * | (= x y) --> T

* | % * | X --> 6

* | % * a-> 6

* | % A_] Result of GCD is 6

* | D=! 6

* a-> 6

A_] Result of GCD is 6

Figure 5: Evaltrace diagram illustrating LET.

Visualizing Evaluation 9

explain this further, let’s examine the LET function in more detail.

LET can be used to create any number of variables, with the property that the creation of the

variables and assignment of values to them is carried out “in parallel.” The following (slightly

unusual) definition of a function for computing the greatest common divisor of two integers

demonstrates a use of this parallel feature.

(defun gcd (x y)
(if (= x y)

x
(let ((x (if (< x y) x y))

(y (if (< x y) y x)))
(gcd x (- y x)))))

The LET expression in GCD is used to ensure that X is less than Y, swapping their values if

necessary, before evaluating the recursive call in the body. Doing the swap correctly depends on

the parallel nature of LET, as the evaltrace given in Figure 5 shows.

The form of evaltrace diagrams for LET expressions exposes the fact that the expressions

(if (< x y) . . .) are evaluated in a context that cannot possibly be affected by the “new”

versions of the variables X and Y created in the LET body. Therefore, these variables are

effectively created and assigned in “parallel.”

Recall from before that the hollow arrow drawn for the LET body’s contour indicates that its

parent is the immediately enclosing contour. This nesting of contours (i.e., the child-to-parent

relationships between contours) is completely determined by the textual inclusion of LET bodies

in functions. In the above example, the parent for the local contour created by the LET expression

is GCD’s contour because GCD textually includes the LET expression. This is, in fact, a general

rule for lexical scoping in Lisp: a contour A can be the parent of another contour B only if the Lisp

code corresponding to contour A textually includes the code for B.

This all implies, also, that a function’s environment always mirrors the textual inclusions in

the code. This fact is important for understanding closures, which we discuss in the next section.

Getting back to our discussion of LET, it should be noted that this parallel behavior of LET is

not always what one desires when creating local variables. For example:

(defun price-change (name old new)
(let ((diff (- new old))

(proportion (/ diff old))
(percentage (* proportion 100.0)))

(list name ’changed ’by percentage ’percent)))

Calling this function leads to an error, as illustrated by the evaltrace in Figure 6. The value of

DIFF is needed in order to compute the value for PROPORTION, but the local variable DIFF has

not yet been created. Therefore the reference to DIFF is interpreted incorrectly as a reference to

a global variable by that name. The global variable DIFF has not been assigned a value (or one

might say it doesn’t exist), hence the error message. The problem can be remedied by carrying out

the creation and assignment of the three local variables serially, using the LET* special function

in place of LET.

8 Visualizing Evaluation

the global variable N has value 1000

q-> (parent 3)

|

t=! Apply PARENT to 3

% create variable N with value 3

%

% q-> (child (+ n 2))

% | q-> (+ n 2)

% | | Refer to PARENT’s N.

% | a-> 5

% t=! Apply CHILD to 5

% % create variable P with value 5

% %

% % q-> (list n p)

% % | n --> 3 Refer to PARENT’s N.

% % | p --> 5

% % a-> (3 5)

% D=! (3 5)

D=! (3 5)

Figure 4: Evaltrace diagram illustrating dynamic scoping.

parent contours permanently associated with them; instead each contour uses the most recently

created contour as its parent. Thus, environments are determined dynamically rather than statically.

If the preceding example were tried in a dynamically scoped Lisp, the parent contour of CHILD

would be the one created by PARENT, and the result of the evaluation would be different, as

shown in Figure 4.

Dynamic scoping was used in early Lisp dialects because in an interpreter it is the most

straightforward scoping discipline to implement efficiently. (This turns out not to be the case

when compiling. This is one reason that modern dialects of Lisp which are compiled as well as

interpreted, such as Common Lisp, are lexically scoped.) In evaltrace diagrams, the nesting of

contours accurately reflects the structure of the call stack of an interpreter, with the inner-most

contour being the top of the stack and the global contour at the bottom. So, we will often refer to

the nesting of contours as the call stack. Dynamic scoping allows the call stack to be used as the

environment, which means that the contours in evaltrace diagrams are drawn only with hollow,

never solid, arrows.

4 Scoping and Textual Inclusion

Earlier we saw that the contours created by the LET special function are drawn with hollow instead

of solid arrows. This is because LET creates contours that are local to other contours. In order to

Visualizing Evaluation 7

the global variable N has value 1000

q-> (parent 3)

|

T_] Apply PARENT to 3

* create local variable N with value 3

*

* q-> (child (+ n 2))

* | q-> (+ n 2)

* | | n --> 3 Refer to PARENT’s local N.

* | a-> 5

* |

* T_] Apply CHILD to 5

* * create local variable P with value 5

* *

* * q-> (list n p)

* * | n --> 1000 Refer to the global N.

* * | p --> 5

* * a-> (1000 5)

* A_] Result of CHILD is (1000 5)

A_] Result of PARENT is (1000 5)

Figure 3: Evaltrace diagram illustrating lexical scoping.

6 Visualizing Evaluation

global contour. When evaluating the symbol SUM inside the LET body, we find that there is a

variable by that name in the current contour. But when evaluating X and Y in the LET body, we

find we must go look in the parent contour. Since there are local variables named X and Y in the

contour of AVERAGE, the symbols X and Y are taken to refer to those variables. (This example

also illustrates another of Lisp’s evaluation rules: quoted objects evaluate to themselves, without

the quote.)

Now we can present an example that highlights the distinction between lexical and dynamic

scoping. Notice below that there is both a global variable N with value 1000, and a local variable

N in the argument list of PARENT. PARENT calls CHILD, which contains the symbol N in its

body. To which variable does CHILD’s N refer?

(setf n 1000)

(defun parent (n)
(child (+ n 2)))

(defun child (p)
(list n p))

Under lexical scoping, every function has associated with it, as part of its definition, a parent

contour. Functions defined at the top level with DEFUN always have the global contour as their

parent. (We’ll have more to say later about how contours are associated with functions that are not

defined at the top level.) A function’s environment is the set of objects visible within its contour,

in other words, objects that reside in its own contour, or in its parent contour, or in its parent

contour’s parent contour, and so on. Functions can only access those variables that are visible

within their environment. Variables that have the same name “shadow” each other. For instance,

a variable N in the current contour would shadow a variable N in the parent contour, so the latter

would not be visible.

In evaltrace diagrams, environments are depicted graphically via the chain of nested contours

that define them. Most contours drawn with a hollow arrow (such as LET contours) have the

immediately surrounding contour as their parent, while contours for functions defined at top level

are drawn with a solid arrow, indicating that their parent contour is the global contour.

Getting back to our present example, the lexical scope rules dictate that the symbol N inside the

body of CHILD must refer to the global variable N, not to PARENT’s local N. This is illustrated

by the evaltrace diagram in Figure 3. CHILD’s environment consists of its own contour (in which

the variable P resides), and its parent contour, which is the global contour. Since CHILD doesn’t

have a local variable named N, the symbol N in its body must refer to the global N, whose value

is 1000. PARENT’s local variable N is completely invisible to CHILD, since PARENT’s contour

is not part of CHILD’s environment.

This scheme is called lexical scoping because environments mirror the nesting structure of the

code. Since CHILD isn’t defined inside of PARENT, none of PARENT’s local variables are visible

to it. We’ll say more about the relationship between textual nesting and environments in the next

section.

Early Lisp dialects, from Lisp 1.5 up through MacLisp and InterLisp—and APL and SNOBOL

as well—use dynamic rather than lexical scoping [1]. In dynamic scoping functions do not have

Visualizing Evaluation 5

q-> (average 3 7)

|

T_] Apply AVERAGE to 3 and 7

* create local variable X with value 3

* create local variable Y with value 7

*

* q-> (let ((sum ...)) ...)

* | q-> (+ x y)

* | |

* | a-> 10

* t=! Enter LET body

* % create local variable SUM with value 10

* %

* % q-> (list x y 'average (/ sum 2))

* % | x --> 3

* % | y --> 7

* % | 'average --> AVERAGE

* % | q-> (/ sum 2)

* % | | sum --> 10

* % | a-> 5

* % a-> (3 7 average 5)

* D=! (3 7 average 5)

A_] Result of AVERAGE is (3 7 AVERAGE 5)

Figure 2: Evaltrace diagram showing a local contour.

The difference between lexical and dynamic scoping disciplines is in the way parent contours

are determined. We will return to this topic shortly.

3 Nested Lexical Contours

Within the body of a function, additional local variables may be created using the LET special

function. Consider the following:

(defun average (x y)
(let ((sum (+ x y)))

(list x y ’average (/ sum 2))))

An evaltrace diagram for AVERAGE is shown in Figure 2. Notice that the lexical contour

associated with the LET body is drawn as a hollow arrow rather than a solid arrow. A solid arrow

indicates that the parent contour is the global contour. The hollow arrow in this diagram indicates

that the parent contour is the immediately enclosing contour. Thus the parent contour of the LET

body is the contour generated by the body of AVERAGE. AVERAGE’s parent contour is the

4 Visualizing Evaluation

q-> (quintuple 5)

|

T_] Apply QUINTUPLE to 5

* create local variable N with value 5

* QUINTUPLE’s variable N has value 5

* q-> (+ (double (double n)) n)

* | q-> (double (double n))

* | | q-> (double n)

* | | | n --> 5

* | | T_] Apply DOUBLE to 5

* | | * create local variable N with value 5

* | | *

* | | * q-> (* n 2)

* | | * | n --> 5

* | | * a-> 10

* | | A_] Result of DOUBLE is 10

* | T_] Apply DOUBLE to 10

* | * create local variable N with value 10

* | *

* | * q-> (* n 2)

* | * | n --> 10

* | * a-> 20

* | A_] Result of DOUBLE is 20

* |

* | n --> 5 QUINTUPLE’s variable N is still 5

* |

* T_] Apply + to 20 and 5

* *

* A_] Result of + is 25

A_] Result of QUINTUPLE is 25

Figure 1: Evaltrace diagram illustrating the creation of contours.

Visualizing Evaluation 3

of this lexical contour. Only thick lines denote lexical contours. Thin lines, which represent calls

to EVAL, do not denote contours. This distinction is an important part of the scoping of Lisp

programs, which will be discussed later.

It is easy to forget that lexical contours are created only when a function is applied, not when

it is defined. If DOUBLE were to be applied five times, five distinct lexical contours, each with

its own variable named N, would be created. Consider the following function:

(defun quintuple (n)
(+ (double (double n)) n))

Both DOUBLE and QUINTUPLE, when applied, create local variables named N. Because of

lexical scoping, QUINTUPLE’s N is distinct from DOUBLE’s N. Furthermore, each of the two

applications of DOUBLE creates a new variable referred to by the name N. This can be seen in the

evaltrace diagram given in Figure 1, where three distinct lexical contours are shown (not counting

the one for +), each containing a variable named N. These variables are independent. Thus, the

value of N in QUINTUPLE’s contour remains 5, even after the second call to DOUBLE assigns

the value 10 to a (distinct) variable which is also named N.

Every lexical contour has a parent contour, except that global variables exist in a top-

level contour (also called the global contour) that has no parent. Consider the function

CIRCUMFERENCE that references a global variable CRUDE-PI: (SETF is the general assignment

operator in Common Lisp.)

(setf crude-pi 3.14)

(defun circumference (r)
(* 2 r crude-pi))

q-> (circumference 5)

|

T_] Apply CIRCUMFERENCE to 5

* create local variable R with value 5

*

* q-> (* 2 r crude-pi)

* | 2 --> 2

* | r --> 5

* | crude-pi --> 3.14

* a-> 31.4

A_] Result of CIRCUMFERENCE is 31.4

The rules for mapping symbols to the variables which they name are called scope rules. When

evaluating the symbol R in the body of CIRCUMFERENCE, the first scope rule tells us to look in

the current lexical contour for a variable with that name. Since there is a local variable named R

created by CIRCUMFERENCE, the symbol R is treated as a reference to that variable. But in the

case of CRUDE-PI, there is no local variable by that name in the current contour. Consequently,

the rules for lexical scoping tell us to look in the parent contour, which happens to be the global

contour (which is also the only other contour in this example). A variable named CRUDE-PI does

exist in the global contour, so the symbol CRUDE-PI is taken to refer to that variable.

2 Visualizing Evaluation

q-> (+ 2 3)

|

a-> 5

When an evaltrace diagram is elided like this to a single application of EVAL, it is equivalent

to the simple evaluation arrow used in [4] and most other books on Lisp:

(+ 2 3) --> 5

The real power of evaltrace notation becomes apparent when we consider the application of

non-primitive functions, since these may create local variables and call other functions from within

their bodies. The function DOUBLE below creates a local variable N to hold its argument, and

calls the primitive function * to compute its result. (All of the examples in this paper are written

in Common Lisp.)

(defun double (n)
(* n 2))

An evaltrace of the expression (double (+ 3 5)) shows how a local variable is created inside

the body of DOUBLE to hold the evaluated argument.

q-> (double (+ 3 5))

|

| q-> (+ 3 5)

| |

| a-> 8

|

T_] Apply DOUBLE to 8

* create local variable N with value 8

*

* q-> (* n 2)

* | n --> 8

* | 2 --> 2

* a-> 16

A_] Result of DOUBLE is 16

This example involves the evaluation of the symbol N. The evaluation rule for symbols is

that they evaluate to the value of the variable which they name. In earlier Lisp dialects people

would speak of symbols themselves being variables or having values, but this is not appropriate in

Scheme or Common Lisp since several variables with the same name may exist simultaneously in

different lexical contexts. The symbol N appearing in the body of DOUBLE refers to the local

variable N that is created when DOUBLE is applied. Outside the body of DOUBLE, the symbol N

does not refer to this variable. The fact that this is a textual property of the program is important,

as it means that illegal references to N can easily be caught by a compiler, before calls to DOUBLE

are actually evaluated.

When DOUBLE is applied, a lexical contour is created in which the variable named N resides.

In the evaltrace diagram, the thick line marking the application of DOUBLE shows the boundaries

Visualizing Evaluation 1

1 Introduction

The EVAL and APPLY operations form the core of a Lisp interpreter and are fundamental to

implementations of applicative languages in general. One of the more difficult tasks in teaching

Lisp to beginners is getting them to understand the true nature of the EVAL/APPLY duality. With

the advent of Scheme [3] and Common Lisp [4], even experienced Lisp programmers may find

that they don’t fully understand evaluation, especially as it relates to lexical vs. dynamic scoping,

closures, local and special variables, and macro expansion.

In this article we present a technique for visualizing evaluation in applicative languages that

helps to graphically explain each of the above concepts. Called “evaltrace notation,” it appears in a

recent textbook by the first author [5] and has been employed in several courses at Carnegie Mellon.

Although our discussion in this paper focuses primarily on the notation itself, we also provide

some insights into the implementation of Lisp and Scheme interpreters and the differences between

the lexical and dynamic scoping disciplines. Extensions to other features such as tail-recursion

elimination and first-class continuations are quite easy to make, though we do not include them

here. It is our hope that evaltrace notation will be widely adopted by Lisp educators. In support of

this, we are making available a set of LaTEX macros to allow others to produce evaltrace diagrams

similar to the ones that appear here.

2 The Basic Evaltrace Notation

Evaluation in Lisp proceeds according to a set of evaluation rules built into the EVAL and APPLY

functions. Evaluation of the simple expression (+ 2 3) employs two of these rules. First,

numbers evaluate to themselves. Second, to evaluate a list describing a function call, one first

evaluates the arguments to the function, and then applies the function to the evaluated arguments.

This leads to the evaltrace of (+ 2 3) shown below. Thin lines represent calls to EVAL, and

thick lines calls to APPLY.

q-> (+ 2 3)

|

| q-> 2 First argument evaluates to itself.

| |

| a-> 2

|

| q-> 3 Second argument evaluates to itself.

| |

| a-> 3

|

T_] Apply + to 2 and 3 Apply the function to its arguments.

*

A_] 5

Often we will want to suppress some details, such as the evaluation of trivial arguments to a

function, or the application of a primitive like +. In that case, the above evaluation is depicted this

way:

Visualizing Evaluation in

Applicative Languages

David S. Touretzky and Peter Lee

December 8, 1989

CMU-CS-89-198-R

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this article we present a technique for visualizing evaluation in applicative languages that helps

to graphically explain a number of basic concepts, including lexical vs. dynamic scoping, closures,

the nature of the EVAL/APPLY duality, local and special variables, and macro expansion. Called

“evaltrace notation,” it appears in a recent textbook by the first author and has been employed in

several courses at Carnegie Mellon. Although our discussion focuses primarily on the notation

itself, we also provide some insights into the implementation of Lisp and Scheme interpreters and

the differences between the lexical and dynamic scoping disciplines. It is our hope that evaltrace

notation will be widely adopted by Lisp educators. In support of this, we have made available a

set of LaTEX macros to allow others to produce evaltrace diagrams similar to the ones that appear

here.

This research was supported in part by the Office of Naval Research under contract N00014-84-K-0415 and in part by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 5404, monitored by the Office of Naval Research under the same contract.

The views and conclusions contained in this document are those of the author(s) and should not be interpreted as representing the official

policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. government.

